
University of Cambridge

Machine Learning Landscapes for

Neural Networks with a Single Hidden Layer

A dissertation submitted to the University of Cambridge in partial

fulfilment of the requirements for the MPhil in Scientific

Computing.

Sathya R. Chitturi

August 2019

Downing College Supervisor: David J. Wales

Declaration

This dissertation is substantially my own work and conforms to the University of

Cambridge’s guidelines on plagiarism. Where reference has been made to other

research this is acknowledged in the text and bibliography. This work contains

fewer than 15,000 words including footnotes, tables and equations (verified via

TEXcount).

Sathya Chitturi

August 2019

Acknowledgements

I thank Professor David Wales for his constant supervision and support. I am also

grateful to Wei Kang, Samuel Coward and Dr. Songul Guryel Karasulu for helpful

discussions regarding the group code. Sponsorship from the Maxwell Center for

Scientific Computing and the Department of Chemistry is also acknowledged.

Abbreviations

AUC-ROC Area Under Curve - Receiver Operating Characteristics

CIFAR-10 Canadian Institute For Advanced Research - 10 Dataset

CNN Convolutional Neural Network

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DNEB Doubly-nudged Elastic Band

DPS Discrete Path Sampling

EL Energy Landscape

EM Expectation Maximization

FC Fully-connected

GPU Graphics Processing Unit

H-EF Hybrid Eigenvector-following

L-BFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno

MNIST Modified National Institute of Standards and Technology Database

NM Newton’s Method

NN Nearest-Neighbour

PES Potential Energy Surface

ResNet-32 Residual Network - 32

RMS Root Mean Square

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

XOR Exclusive Or

Abstract

We study the e↵ects of dataset mislabelling, training set diversity, and reduced

node-connectivity on neural network loss landscapes, using various techniques

developed for energy landscapes exploration. To complement these methods,

we introduce a GPU neural network implementation which accelerates global

optimization by approximately an order of magnitude.

The relevant training data includes custom generated geometry optimization

datasets (D1.2-D3.0), as well as the MNIST digits dataset. For the D1.2-D3.0

datasets, we find that the number of stationary points increases with the size of

the atomic configuration space, suggesting a correspondence between the number

of local minima and statistical uncertainty.

In addition, we find that neural networks can e↵ectively filter uniform ran-

dom noise and show, numerically, that this result holds for both the average

(sampled) local minima and the training global minimum. In addition, the vari-

ance of the testing AUC, computed over a sample of low-lying minima, grows

significantly with the training error. We visualize these landscapes using dis-

connectivity graphs, topological maps of the surface, which provide interesting

insights into the role of the bias-variance trade-o↵ when training under noise.

Finally, we investigate the e↵ects of reduced-connectivity on neural network

landscapes. We find that the presence of locality in these networks can yield com-

plex, frustrated landscapes which contain many high capacity minima. Further,

our analysis suggests that, on a landscape level, neural networks may balance

sparsity and expressiveness to perform well on unseen testing datasets.

This work helps shed further light on neural network loss landscapes and will

likely be relevant for future work on neural network training and optimization.

Contents

1 Introduction 1

1.1 Background . 1

1.2 Literature Review . 3

1.2.1 Neural Network Loss Landscapes 4

1.2.2 Mislabelling . 7

1.2.3 Reduced-Connectivity . 8

1.2.4 Neural Networks on the GPU 10

1.3 Thesis Overview . 10

2 Methods 12

2.1 Machine Learning Model . 13

2.1.1 Datasets . 13

2.1.2 Architecture . 14

2.2 Energy Landscape Methods . 15

2.2.1 Global Optimization . 15

2.2.2 Saddle Point Searching . 17

2.2.3 Discrete Path Sampling and Visualization 17

2.3 CUDA Implementation . 18

2.3.1 Formulation . 18

2.3.2 Custom Kernels and cuBLAS 20

2.3.3 Speed Testing . 22

2.4 Mislabelling Experiments . 24

2.4.1 Dataset Mislabelling Procedure 24

2.4.2 Minima and Transition States in Noisy Datasets 24

2.4.3 Generalization in Noisy Datasets 25

2.5 Neural Network Nearest-Neighbours 26

2.5.1 Formulation . 26

2.5.2 Experiments . 27

3 Results 28

3.1 Speed of The CUDA Implementation 28

3.2 Mislabelling . 31

3.2.1 D1.2-D3.0 . 31

3.2.2 MNIST . 42

3.3 Neural Network Nearest-Neighbours 44

4 Discussion 46

4.1 Speed of The CUDA Implementation 46

4.2 Mislabelling . 47

4.2.1 Minima and Transition States in Noisy Datasets 47

4.2.2 Fitting Accuracies in Noisy Datasets 48

4.2.3 Disconnectivity Graphs for Noisy Datasets 50

4.3 Neural Network Nearest-Neighbours 51

5 Conclusions and Future Work 53

References 56

Appendices 64

A Molecular Configuration Space Distribution 65

B Training and Testing AUC Distribution 66

1

Introduction

1.1 Background

Artificial neural networks are an important class of machine learning techniques

[1,2] which have widely implemented in fields such as computer vision [3–5], natu-

ral language processing [6], finance [7], and robotics [8]. Neural networks can have

very di↵erent architectures, ranging from simple feed-forward fully connected

networks (FCs) featured in this dissertation, to more sophisticated models in-

cluding Recurrent Neural Networks (RNNs) and Convolutional Neural Networks

(CNNs) [1].

For simple FC architectures, a neural network is a mapping from input data

(x) to output predictions (output space) and consists of sequential linear layers

with non-linear activation nodes (�i) (Eqn. 1.1). The parameters of a neural

network are the weights (Wi) that connect these layers, which are determined

during a process known as training [9].

f(x) = �N+1(WN�N(WN�1�N�1(...�1(W1x)))) (1.1)

Training a neural network, like other optimization methods in statistics, in-

volves minimizing a loss function with respect to the parameters of the model [9].

This loss function measures the deviation between the predicted value of the func-

tion and the provided labelled data. Many di↵erent loss functions are possible;

modified versions of the mean-squared-error or cross-entropy losses are typically

1

2

used for most machine learning applications [9].

Current state-of-the-art neural networks can contain thousands of layers with

millions of hidden nodes, defining the loss function in very high dimensional

parameter space. Importantly, unlike other popular techniques, such as Linear

Regression and Support Vector Machines, the neural network cost function is

non-convex, meaning that it is extremely hard (NP hard) to find the global min-

imum [9, 10]. Currently, neural network optimization involves variations on the

steepest-descent method, such as in Adam or RMSprop [11]. However, these al-

gorithms typically do not usually converge to (true) local minima, let alone the

global minimum. Generally, the fitted parameters are obtained at the point in

the minimization sequence where the deviation between subsequent loss values is

smaller than a fixed threshold [11]. Furthermore, in order to optimize for compu-

tational speed, these methods calculate the gradient stochastically, rather than

using the entire training set.

The primary goal of training a neural network is to obtain a solution (mini-

mum) that generalizes well to an unseen testing set [9]. For simplicity, consider

a scalar model where f(x) is the true target distribution and f̂(x) is the approx-

imating function to be learned during training. Then y, as defined in Eqn. 1.2,

is composed of the sum of the true distribution, f(x), and an irreducible error

term, ✏.

y = f(x) + ✏ (1.2)

The generalization gap between f(x) and f̂(x) is often quantified by

E
h�
y � f̂(x)

�2i
, which is composed of three terms – the bias, variance and irre-

ducible error (Eqn. 1.3) [9].

E
h�
y � f̂(x)

�2i
=

⇣
E
⇥
f̂(x)

⇤
� f(x)

⌘2

+
⇣
E[f̂(x)2]� E[f̂(x)]2

⌘
+ �2 (1.3)

The irreducible error, captures the inherent dataset noise, and is often an

unknown component of training (which can be di�cult to estimate). The bias

3

term measures the extent to which the model capacity is su�cient to capture

the complexity of the true function. High bias models limit the capacity to

completely model the training data (underfitting); however, this property can

make them robust to unseen testing sets. On the other hand, the variance term

measures the amount of noise (✏) the approximating function models when trying

to estimate the true function. Models with high variance, therefore, perform well

in training, but generalize poorly (overfitting). Although it seems as though

minimizing either the bias or the variance would reduce the generalization gap

(Eqn. 1.3), in practice these two components are inversely related (bias-variance

trade-o↵) [9]. Thus, neural networks that do generalize well often e↵ectively

balance bias and variance.

Network network training, in particular, often occurs in the overparameter-

ized limit, in which there are significantly more parameters than training data.

Based on this fact, according to established statistical learning theory, one would

expect neural networks to have high variance, overfit to the training data and gen-

eralize poorly. Surprisingly, however, it has been observed that neural networks

can generalize well, despite the huge degree of overparameterization [12–14]. The

motivation for this dissertation is to see whether studying the underlying neural

network loss landscape, in terms of connectivity between local minima and saddle

points, can help explain why neural networks are able to perform so well. Fur-

thermore, we aim to understand how systematic perturbations to neural network

architecture and data a↵ect the resulting landscape and, more broadly, statistical

generalizability.

1.2 Literature Review

This section provides a brief review of a number of areas addressed in this dis-

sertation. Specifically, Section 1.2.1 introduces the idea of a machine learning

energy landscape and summarize previous work studying its properties. Sections

1.2.2 and 1.2.3 summarize previous experiments and results involving dataset mis-

labelling and reduced-connectivity that we build on from an energy landscapes

perspective. Finally, Section 1.2.4 presents past work on porting optimization

4

methods and neural network potentials to the GPU. These references serve as

background for our own GPU implementation.

1.2.1 Neural Network Loss Landscapes

The cost function of a neural network can be visualized as a loss landscape in

high-dimensional parameter space. This surface is highly dependent on the choice

of non-linear activation function, architecture and loss metric (squared loss, cross-

entropy etc.). Recently, there has been much interest in the structure of the loss

landscape and its relation to notions of generalizability, sensitivity to initialization

schemes, and choice of optimizer [12–14]. In theory, specific knowledge about

the neural network loss landscape could improve initialization schemes, training

speed, and quality of solutions which may aid in improving the prediction power

of neural networks.

Unfortunately, direct calculation of the loss landscape is impossible due to is-

sues of computational complexity. It is worth noting that even more modest tasks

such as just finding one local minimum of an arbitrary neural network, is an NP

hard problem [15]. Furthermore, based on much previous work, it is known that

the number of stationary points grows exponentially with the dimensionality of

the problem [10]. This can prove tricky for first- and second-order methods, such

as stochastic gradient descent (SGD) and Newton’s method (NM), as these algo-

rithms can get trapped in local areas of high training loss [10]. For this reason,

some authors have chosen to perform theoretical studies, backed by numerical

simulations, to study the realtionship between the loss landscape and generaliz-

ability. Choromanska et al. consider the performance of various local minima for

neural network optimization [14]. A good performance, by their metric, corre-

sponds to obtaining very high accuracies on both an independent training and

test set. Note that in the overparameterized limit, a neural network overfits the

data and in this case the training accuracy should be very high. Thus, a poor

performance would typically be characterized by having a local minimum with

a low training error, but a high testing error. The authors show that theoret-

ically, subject to a number of assumptions of independence, a neural network

5

optimization reduces to minimizing the energy of the spin-glass hamiltonian from

statistical physics [14]. Based on the spin-glass model, bounds can be derived

showing that there exists a tight band of local minima, bounded above the global

minimum, which is characterized by having minima with low training and testing

errors. Furthermore, it is exponentially less likely to find a minimum with rela-

tively high testing error as the dimensionality of the neural network grows [14]; in

other words, almost any local minimum that is found via standard optimization

techniques should perform comparably to any other local minimum on an unseen

test set. In fact, the authors claim that finding a local minimum solution may be

even better than finding the global minimum, as it might introduce a degree of

regularization [14].

Wu et al. agree with the conclusion that the majority of local minima solu-

tions of the loss landscape tend to have properties similar to that of the global

minimum [13]. This work asserts that neural networks are able to generalize

well because they yield simple solutions (minima) with small Hessian norm. A

theoretical analysis of two-layer networks suggests that these simple solutions

occur because the volumes of the basins of attraction for minima with high test

error are exponentially dominated by the volumes of the basins of attraction for

minima with low test errors. In other words, good solutions lie in large, flat re-

gions of parameter space and bad solutions lie in small, sharp regions [13]. These

claims were supported via numerical simulations using the ResNet-32 architec-

ture on the CIFAR-10 dataset [3] with a ratio of parameters to training examples

of more than 100. The volume of attraction was approximated using the sum of

the largest k eigenvalues of the Hessian matrix (H). Li et al. propose a filter-wise

normalization scheme to preserve scale invariant properties of neural networks,

which allows for comparison between di↵erent architectures and landscapes [16].

Low-dimensional 2D contour plots are created capturing the value of the loss

function along random directions (sampled from a multivarite Gaussian) near re-

spective minima; these visualizations are supplemented by curvature information

using 2D heatmaps of the lowest and highest Hessian eigenvalues. By studying a

variety of di↵erent architectures on the CIFAR-10 dataset, Li et al. suggest that

6

flat minima (large basins) tend to generalize better than sharp minima (small

basins). Furthermore, shallow, wide neural networks have contour surfaces with

a convex appearance, which might make them more generalizable. For instance,

a ResNet with 20 layers has a very convex landscape and is easy to train [16].

Conversely, very large deep networks can have chaotic appearances around local

minima, which can make them untrainable [16]. Nguyen et al. agree and show

that if a network has a pyramid-like structure following a very wide layer, then

local minima are very close the global minimum and the surface is much easier

to optimize [17].

However, the above investigations of the loss landscape su↵er from many

problems. The assumptions made in the theoretical modelling [13,14] are strong

and unlikely to hold in practice. Furthermore, low-dimensional representations

of the landscape, as in [16], can miss the underlying non-convexity present in

higher dimensions. For instance, it is possible to manipulate the dataset and

optimization problem to create solutions with very high training accuracy but

very low testing accurary; this manipulation can be done by adding a tuneable

attacking term to the cost function and deliberately missassigning labels during

training [13]. In addition, it is possible to arbitrarily create datasets in which

specific initialization schemes will either not converge or converge to high-lying

loss solutions [18]. This construction is achieved by carefully choosing inputs,

such that most of the neural network nodes are zero during training [18].

In order to avoid the problems of projecting into low dimensions or making

restrictive theoretical assumptions, the present work utilizes the energy land-

scapes approach to non-convex optimization. The energy landscape formalism

has previously been used to study the non-convex structure of neural network

landscapes [19–22]. Minima of the loss function are found by using basin-hopping

global optimization with local minimization via L-BFGS [23–30] (Section 2.2.1).

Transition states are found using the using the doubly-nudged [31, 32] elastic

band [33, 34] approach with hybrid-eigenvector following [35–37] (Section 2.2.2).

Using discrete path sampling, previous studies have created topological maps

[38–40] corresponding to pathways between minima via transition states for vari-

7

ous neural network datasets, including molecular geometry optimization [19,20],

hand-written digit recognition [19], the logical XOR operation [22] and patient

outcomes [21].

For geometry optimization and hand-written digit recognition, Ballard et

al. show that the majority of high testing AUC minima are concentrated in a

region of low training loss [19, 20], which is in line with other work [13, 14]. Fur-

thermore, for all single-layered architectures, the corresponding landscapes are

relatively convex, exhibiting a single-funnelled structure. In contrast, recent work

on neural networks with multiple hidden layers, shows that, for the same number

of optimizable parameters, it is possible to obtain much more complex multi-

funnelled landscapes [41]; interestingly, these landscapes are greatly simplified

with large amounts of (independent) training data [41]. Another report analyses

a simple XOR model and shows that the number of minima depends strongly

on the amount of L2 regularization [22]; as the regularization is increased, the

loss landscapes become more convex and easy to optimize. Furthermore, these

networks have high capacity and are over-specified, and many of the minima

learn sparse representations (i.e. many of the weights are zero for the optimized

model) [22] .

1.2.2 Mislabelling

Many real datasets of interest have significant label noise. The source of this

noise can arise from di�culties in the data cleaning and aquisition processes,

or simply from ambiguous class di↵erentiation criteria [42–44]. Additionally, to

reduce acquisition costs, many practitioners prefer to obtain large amounts of

slightly noisy data, rather than small amounts of perfectly clean data, for ex-

ample, in massive crowd sourcing type procedures. While this scenario allows

for the creation of much larger labelled training sets, it also has the potential

to greatly deteriorate label quality [42, 43, 45]. In light of the positive advan-

tages of acquiring cheap data, much e↵ort has been dedicated to improving the

training of neural networks under noise. These methods typically involve either

pre-processing filtration schemes or models which explicitly consider noise during

8

training.

Considering the latter schemes, Bekker et al. use a modified expectation-

maximization (EM) algorithm to estimate the correct labels of a dataset using the

current iteration parameters [45]. Using this estimate, the authors build a model

of the noise distribution ✓(i, j) = p(z = j|y = i), where z is the incorrect label

and y is the correct label. The corresponding likelihood function incorporates

both the noise model and the parameters of the neural network, at no extra

computational expense. The article shows that for uniform random label noise

on the MNIST dataset, in which a fixed proportion of the training data labels

are permuted to another class with equal probability, the testing accuracy is only

slightly reduced. Specifically, Bekker et al. observe testing accuracies of 0.88 for

datasets with more than 60 % noise [45]. For unknown stochastic noise, however,

the baseline model performs much more poorly (testing accuracy of 0.2 at 60 %

noise). The noise minimization model, on the other hand, performs significantly

better, obtaining a testing accuracy of 0.4 at the 60 % noise threshold [45].

Similarly, Rolnick et al. show that neural networks can actually generalize

surprisingly well under uniform random noise [42]. With enough correct training

data, and a ratio of 100:1 incorrect to correct examples, neural networks can

still obtain high testing accuracies on commonly used datasets, such as MNIST.

The authors suggest that this phenomenon occurs because of a filtering e↵ect

due to favorable gradient cancellation [42]. This conjecture is supported by the

observation that increasing the batch size of their stochastic optimizer decreases

the testing error, since a gradient averaged over more training points will exhibit

more cancellation. The authors posit that this trait might be present in the

underlying structure of the loss landscape.

1.2.3 Reduced-Connectivity

Reducing the connectivity between neural network nodes is commonly used as

a method to improve the generalizability of standard architectures [46]. In par-

ticular, the neural network DropOut procedure [46] involves sampling many less

expressive networks by stochastically setting weights to zero during training. By

9

using many architectures, individual neural network nodes learn to perform well,

independent of their global connectivity. Furthermore, since these models have

less bias, they have less capacity and do not tend to overfit to noise. In e↵ect,

DropOut schemes can be conceptualized as a form of stochastic regularization.

The original dropout model is still highly e↵ective and, combined with a CNN,

made the winning entry for the 2012 ImageNet challenge [47]. A similar model,

with equally successful results is DropConnect [48]. In this formulation, weights

(as opposed to nodes) are randomly dropped to prevent co-adaptation [48]; the

metric we introduce in Section 2.5.1 follows the frozen weights regime. Since the

initial development of these models, many other variants have been proposed [49].

In addition to regularization, there is also interest in reduced-connectivity

models from the compressed sensing point of view. It has previously been demon-

strated that highly overparameterized models can be replaced by equally good

models which have much smaller (orders of magnitude) number of optimizable

parameters [50]. Since large modern neural networks often have millions of pa-

rameters, methods which have sparse connectivity, but yet generalize well, are

particularly attractive. LeCun et al. propose a reduced-connectivity metric based

on saliency [51]. In this formulation, a fully-connected network is trained, less-

important parameters are frozen, and then the network is re-optimized. The less

explanatory parameters are identified using second-derivation information calcu-

lated using fast back-propagation. Using this formalism, the authors were able to

reduce the number of optimizable parameters by factor of two and also improve

generalizability. Recently, Changpinyo et al. developed a compression method,

based on using sparse connectivity matrices, to reduce the computational burden

of training large CNNs [52]. This sparse model is able to perform as well as

the corresponding dense network on standard benchmark training sets such as

MNIST, CIFAR-10 and ImageNet. Furthermore, Changpinyo et al. suggest that

sparsely-connected CNNs can even promote expressibility, relative to the dense

network, by perturbing the large degree of permutation symmetry [52].

10

1.2.4 Neural Networks on the GPU

Fast computation of the analytical neural network loss and gradient is an ex-

tremely important part of the optimization procedure. For this reason, most

researchers use General Purpose Graphical Processing Units (GPUs) to train

their models [53]. The reason for this trend is that typical neural network archi-

tectures involve multiple steps of high arithmetic intensity, large matrix multipli-

cation operations, which are trivially parallelizable on a GPU [54]. These parallel

algorithms, as well as much more complicated architectures and optimizers, are

extensively utilized in open-source deep learning frameworks such as TensorFlow,

Theano and Pytorch, and have allowed researchers to achieve one- to two-orders

increase in computational speed [54–56]. In one study, Sierra et al. saw a 50-fold

increase in speed to calculate the cost function and gradient of a 3-layered per-

ceptron on the GPU [56]. Here, the NVIDIA CUDA language with the cuBLAS

library [57], a parallel CUDA version of the popular BLAS library, was used to

implement parallel matrix multiplication and the dot product operation.

In addition to calculating potential functions on the GPU, some work has been

dedicated to implementing non-linear optimization methods, such as L-BFGS,

on the GPU [30, 58, 59]. The rational for this setup is that porting the entire

optimization algorithm to the GPU may avoid bottleneck memory transfer steps

from the CPU [30,58,59]. A parallel L-BFGS algorithm was recently implemented

and applied to the problem of centroidal Voronoi tessellation and achieved an

order of magnitude speedup (vs. CPU) [60]. Another version of the method was

implemented and applied to various protein energy landscapes [30] (Section 2.2)

and also achieved order of magnitude speedups for large system sizes.

1.3 Thesis Overview

This work explores machine learning energy landscapes for perceptrons with a sin-

gle hidden layer. Building on previous work [19–22], we use EL methods to further

study neural network loss functions. While these previous studies have primarily

explored the landscapes of ideal neural networks, in contrast, the present work

11

focuses on investigating the e↵ect of introducing systematic changes in molec-

ular configuration space diversity, label accuracy, and node-connectivity on the

underlying neural network landscape. Specifically we vary the size (diversity) of

the dataset configuration space, utilize a DropConnect-inspired method for re-

ducing node-connectivity, and introduce uniform random label errors into each of

our datasets. Finally, recognizing the computational di�culty of studying neural

network energy landscapes, we also implement and benchmark a CUDA neural

network potential for basin-hopping global optimization.

2

Methods

This work explores machine learning landscapes of single-layered neural networks1

under systematic changes to dataset labels, molecular configuration space vol-

ume and reduced-connectivity. Section 2.1 describes the four datasets used in

this dissertation (Section 2.1.1) and presents the original formulation [19, 20]

of the neural network potential (Section 2.1.2). Section 2.2 describes the rele-

vant energy landscape methods for global optimization (Section 2.2.1), transition

state searching (Section 2.2.2), and visualization (Section 2.2.3). Section 2.3 de-

scribes the formulation (Section 2.3.1), implementation (Section 2.3.2), and test-

ing (Section 2.3.3) of the GPU implementation introduced in this work. Finally,

Sections 2.4 and 2.5 describe the numerical procedure used to study neural net-

works under mislabelling and reduced node-connectivity. Note, all serial experi-

ments were performed on an Intel i7-8700 CPU machine (3.20GHz). All parallel

global-optimization experiments used GeForce GTX TITAN Black GPUs running

NVIDIA CUDA 8.0. In addition, please note, some of the material presented here

has been adapted from my two projects for the course (MPhil Mini-Projects 1

and 2).

1In this work, single-layered neural networks refer to perceptrons with a single hidden layer

12

13

2.1 Machine Learning Model

2.1.1 Datasets

We explored the machine learning energy landscape of four datasets (D1.2-D3.0

and MNIST). Three of these datasets (D1.2-D3.0) correspond to a triatomic ge-

ometry optimization problem with varying volumes of molecular configuration

space; these datasets were studied using the serial neural network implementa-

tion (Section 2.1.2). The fourth dataset was the commonly used digit-recognition

database, MNIST. This problem was studied using the GPU implementation in-

troduced in the present work (Section 2.3).

The D1.2, D2.0 and D3.0 datasets consist of bond lengths (r12, r13 and r23)

for a triatomic cluster bound by a Leonard-Jones [61] plus Axilrod-Teller [62]

potential. The datasets were generated by performing geometry optimization

at 200,000 random points in molecular configuration space to find the resulting

local minima (class labels). The machine learning classes correspond to four

physical structures – namely three linear minima and one triangular minimum

[19–21, 63]. The D1.2, D2.0 and D3.0 datasets di↵er by the volume of molecular

configuration space the data is drawn from (D1.2 being the smallest). Here, it

is worth mentioning that the distribution of outcomes varies with the size of

the configuration space. For example, unsurprisingly, the most compact dataset

(D1.2) contains a large number of equilateral triangle minima (class 0). Since we

cannot uncouple the outcome distribution from the choice of configuration space

in an unbiased manner, we studied all relevant properties using the size of the

configuration space as an extra variable parameter; please see Appendix A for

the outcome distributions. Furthermore, having three datasets generated in this

way allowed us to systematically examine the e↵ects of dataset diversity on the

resulting landscapes.

The MNIST dataset is a standard benchmark dataset used for various machine

learning applications [64]. The training data consists of 28⇥28 pixel images of

hand-written digits between 0 and 9. Note, in order to use this dataset, the input

training images were reshaped into a 784-dimensional vector.

14

2.1.2 Architecture

We used a single-layered neural network model with explicit weights for bias

nodes. The outputs of the model (Eqn. 2.1) are discrete classes corresponding to

each of the four minima for the D1.2-D3.0 datasets, and to each of the ten digits

for MNIST. Here yi is the ith output of the neural network (Eqn. 2.1). In this

formulation, a smooth hyperbolic tangent function (tanh) is used as the activation

function. This function is chosen to ensure that the overall loss function has a

smooth analytical gradient and Hessian with respect to the trainable weights.

Note, we also choose tanh to satisfy the universal approximator theorem, which

asserts that neural networks with a single hidden layer and enough hidden nodes

can abitrarily approximate any function [65].

yi = wbo
i +

NhiddenX

j=1

w(1)
ij tanh(wbh

j +
NinX

k=1

w(2)
jk xk). (2.1)

We apply a softmax activation function to yi. This function takes the out-

put of a neural network and converts it into a vector containing class identity

probabilities (Eqn. 2.2):

pc(w;x) =
eyc

PNout

a eya
. (2.2)

To deal with multi-class classification, we used a one-hot encoding scheme

with a categorical cross-entropy loss [19, 20] (Eqn. 2.3). Here w contains the

weights of the model (w(2)
jk , w

(1)
ij , wbh

j and wbo
i), and x stores the input features

(xk). The model also includes an L2 penalty term to reduce overfitting, with the

hyperparameter �, controlling the weight of the regularization [19,20] (Eqn. 2.3).

In addition, the regularization term also facilitates transition states searches by

shifting any zero eigenvalues of the Hessian matrix [22].

E(w;x) = � 1

Ndata

NdataX

d=1

log(pc(d)(w;x)) + �w2. (2.3)

In the present work, we use a short hand, [A,B,C,D,E], to refer to single-

layered architectures with A inputs, B hidden nodes, C outputs, D training

15

data and a regularization constant of E. For the empirical work of this disserta-

tion, we used three di↵erent single-layered neural network architectures. For the

D1.2-D3.0 datasets, we used a [2,10,4,1000,0.0001] model (74 optimizable param-

eters). In addition, for the nearest-neighbour experiments, we additionally used

a [2,5,4,1000,0.00001] architecture (39 optimizable parameters). Finally, for the

MNIST dataset, we used a [784,10,10,1000,0.1] architecture (7960 optimizable

parameters).

2.2 Energy Landscape Methods

2.2.1 Global Optimization

To find low-lying minima for the architectures described in Section 2.1, we use the

basin-hopping global optimization algorithm GMIN, used in molecular science,

to minimize high-dimensional potential energy functions in atomic configuration

space [29, 66]. This method has been used succesfully to find global minima of

atomic clusters, glasses and proteins [29, 66–68]. By making a correspondence

between the potential energy surface (PES) and the neural network loss function,

where the atomic configuration space becomes the neural network parameter

space, we apply this method directly to study neural network energy landscapes

[19, 20].

The GMIN algorithm operates via hypersurface deformation followed by local

minimization and random structural perturbations. The hypersurface deforma-

tion step involves transforming the surface into a series of plateaux and basins of

attraction by replacing the energy (E) of any point in atomic configuration space

by the energy (eE) obtained via local minimization from that point (X) [29]. This

transformation is described mathematically in Eqn. 2.4 and depicted visually in

Figure 1.

eE = min(E(X)). (2.4)

Importantly, the transformation in Eqn. 2.4 eliminates all saddle points but,

by definition, preserves the energies of the local minima. This new surface makes

16

Figure 1: Representation of the basin-hopping energy landscape transformation; the dotted
line is the transformed landscape. This figure was reproduced with permission from reference
[66].

it easier to hop between minima in di↵erent basins, as the transition does not

just have to occur at the transition state [29].

Local minimization (quenching) is performed using a custom limited memory

[23, 24] version of the Broyden [25], Fletcher [26], Goldfarb [27], Shanno [28]

(L-BFGS) algorithm, which is a rank-2 pseudo-Newton method that recursively

approximates the Hessian matrix using information from the energy and gradient

from a user-specified number of update steps [69]. In particular the Hessian

is implicitly approximated using vectors, instead of by storing and using large

matrices [30]. Recently, a CUDA version of L-BFGS was designed for global

optimization and is described extensively in [30].

Having quenched to a local minimum, the GMIN method finds the next can-

didate minimum using stochastic parameter perturbations. Moves are generally

determined using a Metropolis test for the potential energy [70]. If the new min-

imum lies lower in energy than the previous one, it is accepted; however, if it

is higher in energy, it is accepted with an exponentially small probability which

depends on a fictitious temperature (T):

1. accept if Enew < Eold or

2. accept if Enew > Eold and exp(Eold�Enew

kT) > (X s U [0, 1])

17

2.2.2 Saddle Point Searching

In addition to finding minima, we also use EL methods to find transition states,

saddle points with Hessian matrices containing exactly one negative eigenvalue

(all others non-negative), which connect pairs of minima [71]. Although many

methods exist to find minima, transition state searching remains a challenging

optimization problem [31,37,72,73].

Transition state candidates are determined using the doubly-nudged [31, 32]

elastic band [33, 34] (DNEB) approach, which involves approximating local sur-

face curvature by minimizing a path containing a series of images connected by

a harmonic potential. These candidates are refined using hybrid eigenvector-

following [35–37] (H-EF), which modifies the Newton-Rhapson step [72], to per-

form systematic energy maximization along just one Hessian eigenvector. Hav-

ing determined a candidate transition state, the connected minima are located

by minimisation following small displacements along the eigenvector correspond-

ing to the unique negative eigenvalue. This method can be employed to create

databases of connected local minima [73], which are analogous to kinetic transi-

tion networks [74–76].

In this work, performance of neural networks is evaluated using standard Area

Under Curve (AUC) metrics [19]. The AUC is calculated by determining the true

positive and false positive statistics for the machine learning problem. The true

positive rate (Tpr) is defined as the ratio of the number of examples correctly

predicted to be in a given class to the total number of examples in that class.

The false positive rate (Fpr) is similarly defined as the ratio of the number of

false positives to the total number of examples in the other class. The Tpr is

integrated as a function of Fpr from 0 to 1 to obtain the AUC (Eqn. 2.5).

AUC =

Z 1

0

TprdFpr. (2.5)

2.2.3 Discrete Path Sampling and Visualization

The program PATHSAMPLE, which acts as a driver for OPTIM, is used to create

databases of local minima and transition states via discrete path sampling (DPS).

18

This approach allows us to quantify the number of stationary points (for fully

sampled systems) on the energy landscape.

Visualization of the landscape was performed using disconnectivity graph

analysis [38–40]. This approach bins the energy landscape into discrete energy

basins containing minima that can interconvert below each energy threshold, via

a sequence of transition states. Interconversion between minima is considered fea-

sible if they are connected via a transition state. Using this topological method,

an undirected tree is constructed [40]. This approach has previously been applied

to visualize the energy landscape of atomic clusters, glasses and proteins [29].

2.3 CUDA Implementation

2.3.1 Formulation

To perform global optimization, it is necessary to be able to e�ciently calculate

the cost function and gradient of the neural network potential [30]. Importantly,

the computational di�culty of training a neural network rises quickly with the

number of parameters [2]. This makes calculations of very large networks unfea-

sible for even the best modern CPU architectures. Furthermore, the majority of

time spent in the GMIN basin-hopping global optimization algorithm is in the

computation of the analytical loss function and gradient [30]. Thus it is appro-

priate to devote maximal attention to e�cient calculation of the neural network

gradient and loss on the GPU; this is nicely conceptualized using Amdahl’s law,

which states that the expected speedup of a parallel algorithm is 1
1�p , where p is

the proportion of the time spent on the routine to be parallelized [77].

To facilitate a port to CUDA, the neural network implementation described

in Section 2.1.2 was recast into matrix form. This reformulation decomposes the

expressions for the loss into terms involving element-wise products and terms

involving matrix products. In this formulation X 2 RNin⇥Ndata is the data matrix

with rows as features and columns as data points. The matricesW2 2 RNhidden⇥Nin

and W1 2 RNout⇥Nhidden contain the weights for the neural network nodes of the

input and hidden layers, respectively. The vectors wbh 2 RNhidden and wbo 2 RNout

19

contain the bias weights for the hidden and output layers, respectively. Finally,

note that we use element-wise notation in this report. In other words, functions

applied to matrices are applied to each matrix entry (Eqn. 2.6):

A =

2

664

a11 a12

a21 a22

a31 a32

3

775 =) f(A) =

2

664

f(a11) f(a12)

f(a21) f(a22)

f(a31) f(a32)

3

775 . (2.6)

The circle operator is the element-wise product, defined in Eqn. 2.7.

2

664

a11 a12

a21 a22

a31 a32

3

775�

2

664

b11 b12

b21 b22

b31 b32

3

775 =

2

664

a11b11 a12b12

a21b21 a22b22

a31b31 a32b32

3

775 . (2.7)

First we define the matrixH (Eqn. 2.8), which represents the non-linear activation

function being applied to the first hidden layer.

H = tanh(

2

664wbh . . . wbh

3

775+W(2)X). (2.8)

From this expression, the matrices for the outputs and softmax probabilities

Y,P 2 RNout⇥Ndata are calculated as follows (Eqns. 2.9 and 2.10):

Y =

2

664wbo . . . wbo

3

775+W(1)H. (2.9)

P =
exp(Y)P
exp(Y)

. (2.10)

Using these two expressions, E, the cost, can be be calculated using Eqn. 2.11,

where D 2 RNout⇥Ndata is a matrix which contains a 1-of-K class representation

for each data point. 1N is a column vector of length N with all elements equal

to 1. Here, we add a L2 penalty with regularization parameter, �.

20

E = � 1

Ndata
1T

Nout log(P�D)1Ndata
+ �wTw. (2.11)

To calculate the gradient 5E with respect to the weights, we need the fol-

lowing partial derivatives:
dE

dW(2)
,

dE

dW(1)
,

dE

dwbh
and

dE

dwbo
. Since the first two

expressions are derivatives of a scalar with respect to a matrix, we obtain ma-

trix outputs. Hence we reshape these derivative matrices into column vectors,

as indicated by the symbol (:). Thus we can write the gradient in vector form

(Eqn. 2.12).

5E =

2

666666664

dE

dW(2)
(:)

dE

dW(1)
(:)

dE

dwbh

dE

dwbo

3

777777775

+ 2�w. (2.12)

The final equation for the gradient is shown in Eqn. 2.13. Note,

S = sech2(

2

664wbh . . . wbh

3

775+W(2)X).

5E = � 1

Ndata

2

666664

S�W(1)T(D�P)XT(:)

(D�P)HT(:)

S�W(1)T(D�P)1Ndata

(D�P)1Ndata

3

777775
+ 2�w. (2.13)

This form for the gradient is particularly convenient as it has many terms that

occur repeatedly, facilitating ease of computation. More importantly, it is readily

compatible with various cuBLAS functions (Section 2.3.2).

2.3.2 Custom Kernels and cuBLAS

We used custom CUDA kernels and matrix operations from the cuBLAS li-

brary [57] to implement a parallel version of Eqn. 2.11 and Eqn. 2.13. Here, it is

pertinent to note that using the cuBLAS library, as opposed to writing custom

CUDA kernels, is highly favorable as code from the cuBLAS library automat-

21

ically determines the thread, grid and block structure, as well as the memory

management for any GPU device architecture [57]. We implemented element-

wise function operations, f(A), for exp(A), tanh(A) and sech2(A) using custom

CUDA kernels. These kernels all had the same form, the only di↵erence being

the function of interest (Algorithm 1).

Algorithm 1 Element-wise function kernel

ElementFunction(A, B, size)
1. int i blockDim.x⇤blockIdx.x + threadIdx.x
2. if (i < size) =) B[i] f(A[i])

Note, we used specific formulations of tanh(x) and sech2(x) for numerical stability

(Eqns. 2.14 and 2.15):

tanh(x) = 1.0� 2.0

1 + exp(2x)
. (2.14)

sech2(x) =
4.0

(exp(x) + exp(�x))2 . (2.15)

In a similar manner, we also implemented CUDA kernels for element-wise

operations involving two matrices (Algorithm 2). Here, f(A,B) represents various

operations, including elementary element-wise subtraction, multiplication, and

division. The subtraction kernel was used for D � P, the multiplication kernel

for S �W(1)T, and the division kernel for P = exp(Y)P
exp(Y) .

Algorithm 2 Element-wise two matrix operations kernel

ElementTwoFunctions(A, B, C, size)
1. int i blockDim.x⇤blockIdx.x + threadIdx.x
2. if (i < size) =) C[i] f(A[i], B[i])

In addition to custom CUDA kernels, we also used the cuBLAS library for

certain standard matrix operations for maximal e�ciency and stability. In partic-

ular, we used the cublasDger function for outer products (Eqn. 2.16) to broadcast

22

the wbh and wbo vectors in the linear layers (Eqns. 2.8 and 2.9). In particular,

we set x to either wbh or wbo, y = 1N and ↵ = 1.

A = ↵xyT +A. (2.16)

The cublasDgemm function was used for all matrix multiplication operations

(Eqn. 2.17). For the linear layers (Eqns. 2.8 and 2.9), we set ↵ = 1 and � = 1 to

calculate W(2)X and W(1)H. To calculate the matrix-matrix multiplications in

the gradient expression (Eqn. 2.13), we set ↵ = 1 and � = 0. This formulation

allowed us to calculate the following matrix products:

S �W(1)T(D-P), S �W(1)T(D-P)XT and (D-P)HT:

C = ↵op(A)op(B) + �C. (2.17)

Finally, we used the cublasDgemv function for matrix-vector operations (Eqn. 2.18).

Specifically, we used this operation for summation of matrix entries via multipli-

cation with 1 vectors by setting ↵ = 1 and � = 0:

y = ↵op(A)x+ �y. (2.18)

We also implemented the cross-entropy loss using a combination of Algorithm

2 with f(A, B) = �1
Ntrain

log(A)B and cublasDgemm multiplication with appro-

priate 1 vectors for summation. Finally, we used Algorithm 2 to add the regu-

larization components to the loss and gradient. We used A + �B and A + 2�B

for f(A, B), respectively.

2.3.3 Speed Testing

The parallel formulation of the potential introduced in this work was evaluated

for speed against the serial version. We recorded the time taken to perform a

specified number of potential calls on the D3.0 dataset using [2,B,4,D,0.0001]

architectures. Here B, the number of hidden nodes, takes values of 5, 10, 20,

50, 100, 500, 800 and 1000, and D, the amount of training data, is either 1000

or 5000 training points. We recorded the average time taken to perform five

23

basin-hopping steps with 500 L-BFGS iterations for each B,D combination; the

average was calculated using 25 random initial geometries. A low number of L-

BFGS iterations were chosen intentionally to ensure that none of the quenches

converged to a local minimum within the step limit. Furthermore, we kept the

Hessian update size fixed at four for both the CPU and GPU to ensure that both

implementations required the same number of potential calls (same number of

steps).

In addition to evaluating the potential on a fixed call basis, we also tested

the time taken to converge to a local minimum. Importantly, these two timing

metrics are di↵erent. This is due to the trade-o↵ between L-BFGS Hessian update

size and the number of potential calls required to achieve convergence. The CPU

implementation favours a large Hessian update size, since each potential call is

more expensive relative to the GPU. However, for the GPU implementation,

storing a number of L-BFGS updates is costly and thus it is preferable to instead

call the potential many more times. For biomolecular energy landscapes, it has

been shown that the optimal Hessian update size is four (relative to 100-500

on the CPU), which can be faster to convergence by approximately an order of

magnitude [30].

We used the D3.0 dataset to determine the time taken to reach convergence for

the CPU and GPU implementations for four di↵erent systems [2,B,4,D,0.0001],

where B was either 50 or 150 hidden nodes and D was either 1000 or 5000 train-

ing points. These four architectures were chosen because they are systems that

are currently too large to fully characterize using the CPU implementation; fur-

thermore, GPU speedups are generally only expected for large problem sizes [30].

For each system, we recorded the time taken for 10 basin-hopping quenches with

10000 L-BFGS iterations to converge to 10 local minima. We defined conver-

gence at an RMS value of 10�10 for the gradient. We used initial weight vectors

corresponding to local minima and a step size of 0.1 to ensure that each quench

would converge within 10000 L-BFGS iterations. We performed this procedure

for Hessian update sizes of 4, 8, 50, 100, 150, 200, 250, 300, 400, 450 and 500

on both the CPU and GPU. The overall speedup was computed as a ratio of the

24

time corresponding to the optimal CPU update size and the time corresponding

to the optimal GPU update size.

2.4 Mislabelling Experiments

2.4.1 Dataset Mislabelling Procedure

For each dataset, we uniformly permuted fixed percentages of 1000 training labels

without replacement. Thus an outcome i would be mapped to any other outcome

j (j 6= i) with probability 1
N�1 , where N is the number of output classes. Specifi-

cally for the D1.2-D3.0 datasets (four output model), class i could be mislabelled

to that of any class i 6= j with equal probabilities of 1
3 . Similarly, for the MNIST

dataset, we used uniform mislabelling probabilities of 1
9 for each of the ten output

classes. Note, previous work by Rolnick et al. used a fixed amount of correct

training data rather than a total error percentage. In this analysis, we opt for

the error percentage formulation, as the number of stationary points decreases

with the amount of training data [41] and would therefore interfere with our

disconnectivity graph analysis.

2.4.2 Minima and Transition States in Noisy Datasets

To study neural networks subject to label noise, we first investigated the num-

ber of stationary points for the D1.2-D3.0 datasets for various error percentages.

We mislabelled fixed proportions of four training datasets (0, 10, 50 and 100

% label error) according to the procedure delineated in Section 2.4.1 for the

[2,10,4,1000,0.0001] neural network architecture (Section 2.1.2). We used the se-

rial GMIN implementation (Section 2.2.1) to obtain a database of local minima;

these experiments were converged to an RMS gradient of 10�10 for each mini-

mization. We used OPTIM to tightly converge minima (Section 2.2.2). Finally,

we used PATHSAMPLE to create a database of minima and transition states;

note, the PATHSAMPLE stage used the DNEB and H-EF methods via OPTIM

(Section 2.2.2). From this connected database, we extracted the loss of all minima

as well as the total number of minima and transition states.

25

2.4.3 Generalization in Noisy Datasets

We also studied how minima obtained from noisy loss functions generalized to

unseen testing sets. We used the same mislabelling procedures and architectures

described in Section 2.4.2 with the [2,10,4,1000,0.0001] and [784,10,10,1000,0.1]

architectures respectively for D1.2-D3.0 and MNIST. For the D1.2-D3.0 datasets,

local minimization was performed via the serial neural network potential (Sec-

tion 2.1.2) with an RMS gradient convergence criterion of 10�10. Serial OPTIM

and PATHSAMPLE were used to tightly converge minima and create a discrete

path sampling database, respectively. The MNIST experiment, with 7960 opti-

mizable parameters, required the GPU implementation introduced in this work

(Section 2.3). We used the new GPU implementation (Section 2.3) to perform

2000 basin-hopping quenches with an RMS convergence criteria of 10�10.

For both architectures, the serial OPTIM method was used to calculate train-

ing and testing AUC values for all minima at all error thresholds. For each

dataset, the testing AUC values were calculated using 1000 correctly labelled

unseen testing points drawn from the same distributions, using the parameters

obtained from both the training global minimum as well as an average over all

database minima on a corresponding testing dataset. Here it is pertinent to note,

for both types of dataset, that the average quantities more correctly correspond

to the average values calculated over low-lying sampled minima. Also, the global

training minimum is more correctly described as the lowest training minimum we

obtained in our analysis.

For further analysis, we computed the training AUC values for the clean and

mislabelled entries of the training data for all the respective datasets. The mo-

tivation for this experiment was to see how well our architectures learn to filter

uniform random noise. Note, a neural network that performs very well on the

clean segment of the training data and very poorly on the mislabelled section fil-

ters noise e↵ectively. To perform this experiment, we followed the same procedure

delineated above for each subset of entries, with the appropriate modification for

the number training points. More concretely, for a dataset with 10% error, we cal-

culated the average training AUCs corresponding to 900 clean training examples

26

and 100 mislabelled training examples.

Finally, we used disconnectivity graph analysis using DISCONNECTION DPS

[38–40] for the D1.2-D3.0 mislabelled datasets to visualize the neural network loss

landscapes. Each landscape has its minima coloured by training and testing AUCs

on separate plots.

2.5 Neural Network Nearest-Neighbours

2.5.1 Formulation

We explored how reduced-connectivity between neural network nodes a↵ects the

landscape of perceptrons with a single hidden layer. The motivation for these

experiments was two-fold. First, it allows for a systematic study of the e↵ects of

locality on the network. For example, it may be possible to obtain glassy, multi-

funnelled landscapes using this approach; this would be similar to molecular case,

in which short-range forces can produce more complicated landscapes with many

more stationary points [78–81]. Secondly, it allows us to study the relationship

between neural network architecture and capacity.

In this work, the network connectivity is described by a straightforward linear

mapping. First, we project all nodes onto an equally divided unit line at locations

0, 1/(N��1), 2/(N��1), . . . , (N��2)/(N��1), 1; here, N�, refers to a general

neural network node. The distance between hidden node h and input node i is

defined as dhi (Eqn. 2.19).

dhi =

����
h� 1

Nhidden � 1
� i� 1

Nin � 1

���� . (2.19)

The distance between hidden node h and output node o is defined as dho (Eqn. 2.20).

dho =

����
h� 1

Nhidden � 1
� o� 1

Nout � 1

���� . (2.20)

We sort the distances by magnitude and keep weights corresponding to the spec-

ified number of nearest-neighbours as well as all bias weights; all other weights

are set to zero. Equal distances are resolved by ascending order for node index.

27

Note, the potential described here was not developed for this dissertation, but

was previously programmed in GMIN, OPTIM and PATHSAMPLE by Professor

David Wales.

2.5.2 Experiments

The potential described in Section 2.5.1 was used to generate databases of min-

ima and transition states for the [2,10,4,1000,0.0001] and the [2,5,4,1000,0.00001]

architectures on the D3.0 dataset; this dataset was chosen specifically as it had

a large number of minima for 1000 training points and 10 hidden nodes.

For the [2,10,4,1000,0.0001] architecture, we examined the e↵ects of allowing

1, 2, 3 and 100 nearest-neighbours on the machine learning landscapes; these

corresponded to 40, 20, 10 and 0 frozen weights, respectively. GMIN was used for

local minimization, OPTIM was used for tight convergence and AUC calculation

and PATHSAMPLE was used to build a DPS database. Note, the experiment

for 100 nearest-neighbours was intended to test whether the modified potential

could recover the same minima as the fully-connected potential in the limit of a

large number of nearest-neighbours. We also created a database for the 3 nearest-

neighbour potential, relaxed using the original single-layered potential. Specif-

ically, we extracted the nearest-neighbour PATHSAMPLE minima and relaxed

them with the fully-connected potential using OPTIM (RMS convergence 10�10).

All nearest-neighbour experiments for the [2,10,4,1000,0.0001] architecture were

visualized using disconnectivity graphs, coloured by testing AUC.

For the [2,5,4,1000,0.00001] architecture, we compared the two and three

nearest-neighbour models to the fully-connected model. Here we deliberately

chose a smaller regularization constant to reduce the convexity of the landscape.

The intention of this experiment was to determine whether, under low regu-

larization, it is possible to obtain multi-funnelled landscapes using our reduced

node-connectivity measure. Again, we used the GMIN, OPTIM, PATHSAMPLE

and DISCONNECTION DPS workflow described earlier to create discrete path

databases and disconnectivity graphs.

3

Results

3.1 Speed of The CUDA Implementation

We implemented a single-layered neural network potential on the GPU and in-

terfaced it with the existing CUDAGMIN framework [30]. The speed for a fixed

number of potential calls was evaluated as a function of the number of hidden

nodes and the amount of training data. Tables 3.1 and 3.2 present the average

GPU speedup for five basin-hopping steps and 500 L-BFGS iterations for various

numbers of hidden nodes and for 1000 and 5000 training points. Large increases

in speed were observed for very wide networks (500-1000 hidden nodes) for both

1000 and 5000 training points (Tables 3.1-3.2). However, the CUDA implemen-

tation was slower for smaller systems (5-20 hidden nodes, 1000 training points).

For a fixed number of hidden nodes, the relative speedup was significantly faster

for 5000 training points vs. 1000 training points. The maximum speedup was

obtained for 1000 hidden nodes and 5000 training points (factor of nearly 30;

Table 3.2).

28

29

Hidden nodes Time CPU(s) Time GPU(s) Speedup
5 2.27 7.47 0.30x
10 3.86 10.32 0.37x
20 7.02 10.55 0.67x
50 15.15 12.92 1.17x
100 29.45 19.35 1.52x
500 145.28 21.62 6.72x
800 231.29 24.93 9.28x
1000 287.64 27.87 10.32x

Table 3.1: CPU vs. GPU implementations for 5 to 1000 hidden nodes and 1000 D3.0 training
points. Average time was recorded for five basin-hopping steps with 500 L-BFGS iterations.

Hidden nodes Time CPU(s) Time GPU(s) Speedup
5 11.09 9.78 1.13x
10 19.03 12.42 1.53x
20 32.65 18.27 1.79x
50 76.64 17.49 4.38x
100 148.16 21.02 7.05x
500 719.87 35.83 20.09x
800 1124.37 41.22 27.28x
1000 1404.59 48.86 28.75x

Table 3.2: CPU vs. GPU implementations for 5 to 1000 hidden nodes and 5000 D3.0 training
points. Average time was recorded for five basin-hopping steps with 500 L-BFGS iterations.

In addition to the speed per fixed number of potential calls, we also recorded

the time taken to perform ten basin-hopping quenches to convergence as a func-

tion of the L-BFGS Hessian update size. The four test systems were 1000 and

5000 training points with 50 and 150 hidden nodes (Tables 3.3-3.6). For 50 hidden

nodes and 1000 training points, we observed the fastest convergence for an update

size of 200 on the GPU; the optimal CPU update size was 350 (Table 3.3). For

this system, the CPU implementation was faster than the GPU implementation

by a factor of 1.3 (Table 3.3).

Hist. 4 8 50 100 150 200 250 300 350 400 450 500
GPU(s) 26.3 23.4 21.0 16.1 16.7 15.8 17.1 17.2 17.1 17.0 17.1 17.3
CPU(s) 56.7 55.1 22.4 14.5 12.0 13.3 13.5 12.3 11.9 12.1 12.0 12.1

Table 3.3: Time taken for ten basin-hopping quenches to reach convergence on the GPU and
CPU for 50 hidden nodes and 1000 training points for various values of the L–BFGS Hessian
update size. Optimal times for GPU and CPU are shown in bold.

30

For 50 hidden nodes and 5000 training points, we observed the fastest conver-

gence for an update size of 100 on the GPU; the optimal CPU update size was

250 (Table 3.4). For this system, the GPU implementation was faster than the

CPU implementation by a factor of 3.4 (Table 3.4).

Hist. 4 8 50 100 150 200 250 300 350 400 450 500
GPU(s) 34.0 31.7 25.9 17.2 19.2 17.7 17.6 17.7 17.7 17.7 17.7 17.7
CPU(s) 297 250 169 74.7 63.1 58.7 57.9 57.9 58.0 59.0 58.6 59.2

Table 3.4: Time taken for ten basin-hopping quenches to reach convergence on the GPU and
CPU for 50 hidden nodes and 5000 training points for various values of the L–BFGS Hessian
update size. Optimal times for GPU and CPU are shown in bold.

For 150 hidden nodes and 1000 training points, we observed the fastest con-

vergence for an update size of 100 on the GPU; the optimal CPU update length

was 350 (Table 3.5). For this system, the GPU implementation was faster than

the CPU implementation by a factor of 1.6 (Table 3.5).

Hist. 4 8 50 100 150 200 250 300 350 400 450 500
GPU(s) 34.0 34.3 26.2 24.3 25.3 25.6 25.9 24.9 24.7 24.6 24.8 24.7
CPU(s) 173 159 70.1 42.9 40.7 40.3 39.5 39.2 38.9 39.1 39.6 38.9

Table 3.5: Time taken for ten basin-hopping quenches to reach convergence on the GPU and
CPU for 150 hidden nodes and 1000 training points for various values of the L–BFGS Hessian
update size. Optimal times for GPU and CPU are shown in bold.

Finally, for 150 hidden nodes and 5000 training points, we observed the fastest

convergence for an update size of 100 on the GPU; the optimal CPU update size

was 150 (Table 3.6). For this system, the GPU implementation was faster than

the CPU implementation by a factor of 6.6 (Table 3.6).

Hist. 4 8 50 100 150 200 250 300 350 400 450 500
GPU(s) 45.7 42.6 30.3 26.2 27.9 31.1 27.2 28.1 28.4 28.2 28.4 28.5
CPU(s) 834 707 282 195 173 175 178 179 189 180 180 178

Table 3.6: Time taken for ten basin-hopping quenches to reach convergence on the GPU and
CPU for 150 hidden nodes and 5000 training points for various values of the L–BFGS Hessian
update size. Optimal times for GPU and CPU are shown in bold.

31

3.2 Mislabelling

We investigated the e↵ect of introducing systematic errors into the training

dataset on the resulting neural network loss function. These experiments were

performed for three datasets that span distinct volumes of molecular configura-

tion space, denoted D1.2-D3.0 (Section 3.2.1), as well as MNIST.

3.2.1 D1.2-D3.0

First, we determined the number of transition states and minima for the three

geometry optimization datasets (D1.2-D3.0) and the loss associated with the

training global minimum1 (Tables 3.7-3.9).

Error (%) Min Ts GMIN Loss
0 6 20 0.519
10 13 66 0.791
50 26 155 1.285
100 20 148 1.236

Table 3.7: Number of minima (Min) and transition states (Ts) for the D1.2 dataset as a
function of the mislabelling error, along with the loss value of the training global minimum.

Error (%) Min Ts GMIN Loss
0 167 779 0.803
10 203 817 1.002
50 292 1181 1.300
100 260 1372 1.312

Table 3.8: Number of minima (Min) and transition states (Ts) for the D2.0 dataset as a
function of the mislabelling error, along with the loss value of the training global minimum.

Error (%) Min Ts GMIN Loss
0 122 592 0.850
10 266 960 1.000
50 394 1474 1.291
100 490 1395 1.321

Table 3.9: Number of minima (Min) and transition states (Ts) for the D3.0 dataset as a
function of the mislabelling error, along with the loss value of the training global minimum.

1More correctly, this refers to the the minimum with the lowest training loss in our database.

32

We observed that the number of local minima and transition states increased

with the percentage of mislabelled data for all three datasets (Tables 3.7-3.9).

The loss of the global minimum also increased with the percentage of mislabelled

data (Tables 3.7-3.9). Furthermore, the larger molecular configuration spaces

tended to have a greater number of stationary points (D3.0 > D2.0 > D1.2) for

each error level.

To study generalization, we used the AUC value corresponding to the training

global minimum as a metric to characterize the performance of the neural network

on the D1.2-D3.0 datasets. For all three datasets, both the training and testing

AUC decreased as the percentage of mislabelled data increased (Tables 3.10-3.12).

For these datasets, at 0% error, the training and testing AUC values were very

similar. Interestingly, we observed that for 10% and 50% mislabelled training

sets, the testing AUCs corresponding to the global training minima exceeded the

respective training AUCs. However, at an error rate of 100% the testing AUCs

decreased significantly, falling to lower values than the corresponding training

AUCs (Tables 3.10-3.12).

Error (%) Training AUC, Loss Testing AUC, Loss
0 0.810, 0.519 0.797, 0.552
10 0.730, 0.791 0.791, 0.622
50 0.604, 1.285 0.741, 0.994
100 0.772, 1.236 0.242, 2.771

Table 3.10: Training and testing loss and AUC values for the global minimum with the D1.2
dataset.

Error (%) Training AUC, Loss Testing AUC, Loss
0 0.808, 0.803 0.778, 0.867
10 0.724, 1.002 0.741, 1.050
50 0.647, 1.300 0.708, 1.232
100 0.578, 1.312 0.351, 1.609

Table 3.11: Training and testing loss and AUC values for the global minimum with the D2.0
dataset.

33

Error (%) Training AUC, Loss Testing AUC, Loss
0 0.749, 0.850 0.732, 0.891
10 0.727, 1.000 0.720, 0.927
50 0.639, 1.291 0.706, 1.131
100 0.589, 1.321 0.336, 1.918

Table 3.12: Training and testing loss and AUC values for the global minimum with the D3.0
dataset.

To study the properties of the cost function further, we also investigated the

AUC value averaged over all the local minima in our database. These results,

as well as the corresponding standard deviations, are reported in Tables 3.13-

3.15. The same trends present for the training global minimum were observed

for the averages. In addition, the standard deviation of both the training and

testing AUC values increased as the percentage of mislabelled data increased.

Furthermore, the standard deviation of the testing AUC values was significantly

greater than for training (Tables 3.13-3.15). Please see Appendix B for violin

plots visualizing the training and testing AUC distributions.

Error (%) Training <AUC>, �(AUC) Testing <AUC>, �(AUC)
0 0.810, 0.00033 0.796, 0.00031
10 0.728, 0.0021 0.791, 0.0020
50 0.602, 0.0018 0.739, 0.0030
100 0.768, 0.0047 0.245, 0.0043

Table 3.13: Average and standard deviation of AUC values for all the local minima in the
D1.2 dataset for testing and training.

Error (%) Training <AUC>, �(AUC) Testing <AUC>, �(AUC)
0 0.806, 0.0010 0.778, 0.00091
10 0.723, 0.0047 0.754, 0.0071
50 0.638, 0.0031 0.691, 0.023
100 0.575, 0.0057 0.342, 0.022

Table 3.14: Average and standard deviation of AUC values for all the local minima in the
D2.0 dataset for testing and training.

34

Error (%) Training <AUC>, �(AUC) Testing <AUC>, �(AUC)
0 0.746, 0.0035 0.733, 0.0025
10 0.724, 0.0036 0.726, 0.0043
50 0.638, 0.0029 0.699, 0.0083
100 0.591, 0.0061 0.340, 0.013

Table 3.15: Average and standard deviation of AUC values for all the local minima in the
D3.0 dataset for testing and training.

We also studied the average training AUC for the mislabelled and correctly

labelled components of each training dataset for each error level (Tables 3.16-

3.18). Based on this analysis, we found that the training AUC was very low

when calculated based only on the mislabelled portion of each training dataset.

Conversely, the training AUC was very high when computed on the training

dataset containing only the correctly labelled examples (Tables 3.16-3.18). For

every dataset, the training AUC values for the correctly labelled components

exceeded the corresponding testing AUC values (Tables 3.16-3.18 and 3.13-3.15).

Error (%) <AUC>, �(AUC) <AUC>, �(AUC) <AUC>, �(AUC)
INCORRECT CORRECT ALL

0 - 0.810, 0.00033 0.810, 0.00033
10 0.190, 0.019 0.809, 0.0023 0.728, 0.0021
50 0.398, 0.010 0.779, 0.0054 0.638, 0.0031
100 0.768, 0.0047 - 0.768, 0.0047

Table 3.16: Average and standard deviation of training AUC values for the incorrect and
correct components of the mislabelled D1.2 dataset. The ALL column is repeated from Table
3.13 for comparison.

Error (%) <AUC>, �(AUC) <AUC>, �(AUC) <AUC>, �(AUC)
INCORRECT CORRECT ALL

0 - 0.806, 0.0010 0.806, 0.0010
10 0.559, 0.013 0.745, 0.0045 0.723, 0.0047
50 0.522, 0.0065 0.772, 0.0040 0.638, 0.0029
100 0.591, 0.0061 - 0.591, 0.0061

Table 3.17: Average and standard deviation of training AUC values for the incorrect and
correct components of the mislabelled D2.0 dataset. The ALL column is repeated from Table
3.14 for comparison.

35

Error (%) <AUC>, �(AUC) <AUC>, �(AUC) <AUC>, �(AUC)
INCORRECT CORRECT ALL

0 - 0.746, 0.0035 0.746, 0.0035
10 0.509, 0.015 0.747, 0.0034 0.724, 0.0036
50 0.539, 0.0079 0.760, 0.0072 0.638, 0.0029
100 0.591, 0.0061 - 0.591, 0.0061

Table 3.18: Average and standard deviation of training AUC values for the incorrect and
correct components of the mislabelled D3.0 dataset. The ALL column is repeated from Table
3.15 for comparison.

The databases of minima and transition states for D1.2-D3.0 were visualized

using disconnectivity graphs (Figures 2-4). These graphs are presented for each

error level (0-100%). To study generalizability, two graphs were created for each

error threshold, with minima coloured by training and testing AUCs (Figures 2-4).

We observed that the disconnectivity graphs coloured by training AUC tended

to have a relatively high AUC values near the global minimum. In addition,

for low error rates, the graphs coloured by testing AUC also had relatively high

AUC values for low-lying minima. Conversely, for high error rates, many high

performing (testing AUC) minima were found at high values of training loss

(Figures 2-4).

36

0.001

5SBJOJOH AUC
0.����

0.����

0.����

0.����

0.���

(a) 0 % Mislabelled (Training AUC)

0.001

5FTUJOH�"6$
�����

������

������

������

�����

(b) 0 % Mislabelled (Testing AUC)

0.001

5SBJOJOH�"6$
�����

������

������

������

�����

(c) 10 % Mislabelled (Training AUC)

0.001

5FTUJOH�"6$
������

������

������

������

�����

(d) 10 % Mislabelled (Testing AUC)

Figure 2: Disconnectivity graphs for dataset D1.2, 1000 training points, � = 0.0001, coloured
by training and testing AUC as a function of label errors.

37

0.001

5SBJOJOH�"6$
�����

������

������

������

�����

(e) 50 % Mislabelled (Training AUC)

0.001

5FTUJOH�"6$
�����

������

������

������

�����

(f) 50 % Mislabelled (Testing AUC)

0.001

5SBJOJOH�"6$
�����
������

������

������

�����

(g) 100 % Mislabelled (Training AUC)

0.001

5FTUJOH�"6$
�����

������

������

������

�����

(h) 100 % Mislabelled (Testing AUC)

Figure 2: (continued) Disconnectivity graphs for dataset D1.2, 1000 training points, � =
0.0001, coloured by training and testing AUC as a function of label errors.

38

0.001

5SBJOJOH�"6$
�����
������

������

������

�����

(a) 0 % Mislabelled (Training AUC)

0.001

5FTUJOH�"6$
�����
������

������

������

�����

(b) 0 % Mislabelled (Testing AUC)

0.001

5SBJOJOH�"6$
�����

������

������

������

�����

(c) 10 % Mislabelled (Training AUC)

0.001

5FTUJOH�"6$
�����

������

������

������

�����

(d) 10 % Mislabelled (Testing AUC)

Figure 3: Disconnectivity graphs for dataset D2.0, 1000 training points, � = 0.0001, coloured
by training and testing AUC as a function of label errors.

39

0.001

5SBJOJOH�"6$
�����
������

������

������

�����

(e) 50 % Mislabelled (Training AUC)

0.001

5FTUJOH�"6$
�����
������

������

������

�����

(f) 50 % Mislabelled (Testing AUC)

������
������
������

������

�����

0.001

5SBJOJOH�"6$�

(g) 100 % Mislabelled (Training AUC)

0.001

5FTUJOH�"6$�
������
������
������
������

�����

(h) 100 % Mislabelled (Testing AUC)

Figure 3: (continued) Disconnectivity graphs for dataset D2.0, 1000 training points, � =
0.0001, coloured by training and testing AUC as a function of label errors.

40

0.001

5SBJOJOH�"6$
�����
������

������

������

�����

(a) 0 % Mislabelled (Training AUC)

0.001

5FTUJOH�"6$
�����
������

������

������

�����

(b) 0 % Mislabelled (Testing AUC)

5SBJOJOH�"6$�
�����
������

������

������

�����
0.001

(c) 10 % Mislabelled (Training AUC)

0.001

5FTUJOH�"6$
�����
������

������

������

�����

(d) 10 % Mislabelled (Testing AUC)

Figure 4: Disconnectivity graphs for dataset D3.0, 1000 training points, � = 0.0001, coloured
by training and testing AUC as a function of label errors.

41

0.001

5SBJOJOH�"6$
�����
������

������

������

�����

(e) 50 % Mislabelled (Training AUC)

0.001

5FTUJOH�"6$
�����

������

������

������

�����

(f) 50 % Mislabelled (Testing AUC)

5SBJOJOH�"6$

������

������

������

�����

�����

0.001

(g) 100 % Mislabelled (Training AUC)

0.001

5FTUJOH�"6$
�����
������

������

������

�����

(h) 100 % Mislabelled (Testing AUC)

Figure 4: (continued) Disconnectivity graphs for dataset D3.0, 1000 training points, � =
0.0001, coloured by training and testing AUC as a function of label errors.

42

3.2.2 MNIST

We used the GPU implementation to obtain a database of minima for the MNIST

dataset for various percentages of mislabelled training data. Analogously to Sec-

tion 3.2.1, we obtained the average and standard deviation of the training and

testing AUCs at each error threshold (Table 3.19). We found that even at rel-

atively high error levels (75%), we were able to obtain high testing AUCs. Fur-

thermore, we found that the standard deviation over the database of minima

increased with the amount of mislabelled data and was significantly higher for

testing vs. training (Table 3.19 and Figure 5).

Error (%) Training <AUC>, �(AUC) Testing <AUC>, �(AUC)
0 0.9996, 0.0027 0.9687, 0.010
10 0.9783, 0.0070 0.9645, 0.012
25 0.9545, 0.013 0.9472, 0.018
40 0.9429, 0.015 0.9304, 0.022
50 0.9390, 0.016 0.9197, 0.024
60 0.9310, 0.017 0.8940, 0.031
75 0.9281, 0.020 0.7716, 0.061
100 0.9509, 0.015 0.2333, 0.072

Table 3.19: Average and standard deviation of AUC values on the MNIST dataset for testing
and training.

Finally, we found that the average local minimum performed significantly

better on the clean segments of the mislabelled training data (Table 3.20). In

particular, even when more than half the training set was mislabelled, the neural

networks preferentially performed better on the clean subsection (Table 3.20).

43

Error (%) <AUC>, �(AUC) <AUC>, �(AUC) <AUC>, �(AUC)
INCORRECT CORRECT ALL

0 - 0.9996, 0.0027 0.9996, 0.0027
10 0.7747, 0.050 0.9997, 0.0014 0.9783, 0.0070
25 0.8011, 0.044 0.9991, 0.0025 0.9545, 0.013
40 0.8440, 0.032 0.9976, 0.0042 0.9429, 0.015
50 0.8707, 0.029 0.9950, 0.0062 0.9390, 0.016
60 0.8893, 0.026 0.9891, 0.010 0.9310, 0.017
75 0.9164, 0.024 0.9729, 0.019 0.9281, 0.020
100 0.9509, 0.015 - 0.9509, 0.015

Table 3.20: Average and standard deviation of training AUC values for the incorrect and
correct components of the mislabelled MNIST dataset. The ALL column is repeated from
Table 3.19 for comparison.

(a) Training AUC for various percentages of mislabelled data.

(b) Testing AUC for various percentages of mislabelled data.

Figure 5: Violin plots for the training and testing AUC values for various error percentages
on the MNIST dataset. This plot was created using Plotly [82].

44

3.3 Neural Network Nearest-Neighbours

We used the nearest-neighbour scheme described in Section 2.5 to study land-

scapes with reduced-connectivity.

0.001

(A) 1 NN

0.001

(B) 2 NN

0.001

(C) 3 NN

0.001

(D) 100 NN

0.001

(E) 3 NN Relaxed

0.001

(F) FC

Testing AUC

Figure 6: Disconnectivity graphs for 1, 2, 3 and 100 nearest-neighbours (NN) for the D3.0
dataset. FC refers to the fully-connected original architecture. The colouring runs from red
(low testing AUC) to blue (high testing AUC).

45

The results for the [2,10,4,1000,0.0001] architecture for 1, 2, 3 and 100 (i.e.

fully connected) nearest-neighbours were visualized using disconnectivity graphs

(Figure 6). Here, all the graphs are coloured by testing AUC (same scale). The

graphs for 3 NN relaxed and 100 NN were very similar to the fully-connected

(FC) network. The graphs for two and three nearest-neighbours had many more

stationary points and exhibited frustrated, single-funnelled landscapes. Inter-

estingly, for the majority of minima, the two nearest-neighbour model outper-

formed the three nearest-neighbour model and the fully-connected model. Fi-

nally, we only found two minima, with very low testing AUC values, for one

nearest-neighbour.

For the reduced regularization [2,5,4,1000,0.00001] architecture, the discon-

nectivity graphs for two and three nearest-neighbours were significantly more

frustrated than the fully-connected model; in addition, these models exhibited

multi-funnelled landscapes (Figure 7).

0.001

(A) 2 NN

0.001

(B) 3 NN

0.001

(C) FC

Figure 7: Disconnectivity graphs for 2 and 3 nearest-neighbours (NN) for the D3.0 dataset,
compared to the fully-connected [2,5,4,1000,0.00001] architecture (FC).

Note, all the results presented here are analysed in detail in the next section.

4

Discussion

4.1 Speed of The CUDA Implementation

In this dissertation, we successfully implemented a single-layered neural net-

work potential in CUDA. We interfaced this potential with GMIN by adapting a

Fortran90-CUDA wrapper. We studied the speed, for a fixed number of potential

calls, of this new formulation as a function of the number of hidden nodes and

the amount of training data. We observed large speedups for wide networks for

both 1000 and 5000 training points (Tables 3.1-3.2). However, the potential was

slower for smaller systems (5-10 hidden nodes and 1000 training points). These

results are in line with expected results from GPU programming, namely that

speedups generally scale with the problem size [30, 53]. This is because GPUs

are programmed for high arithmetic intensity, low throughput operations (such

as matrix multiplication) [53]. Thus, any given GPU core will perform more

slowly than a corresponding CPU core but speedups will arise due to the sheer

number of processing units on a typical GPU. For larger systems, the number of

parallel computations increases, and therefore so does the speed relative to the

CPU. Unsurprisingly, we observed the largest speedup (29-fold) for the largest

system: 1000 hidden nodes and 5000 training points (Table 3.2). Satisfyingly,

we also observed that the time for a fixed number of potential calls grew much

more slowly for the GPU implementation than for the CPU implementation. For

example, a 10 fold increase in the number of nodes from 100 to 1000 hidden nodes

46

47

(5000 training points) increased the CPU computation time by a factor of 9.5,

while the same increase in the number of nodes on the GPU only increased the

computation time by a factor of 2.3 (Table 3.2).

We also found that the GPU implementation converges faster than the CPU

implementation. As explained in [30], there is a di↵erence between the time per

potential call and the time to convergence. On the CPU, it is more e�cient

to use a large number of L-BFGS updates because the time taken per call is

relatively high. Since the Hessian is approximated quite accurately, fewer L-

BFGS steps are needed to minimize the objective function. However, on the

GPU, it is more e�cient to use a cruder approximation to the Hessian, which

requires many more L-BFGS steps to reach convergence. Thus, to enable fair

comparison, we measured the time taken to reach convergence for CPU and GPU

optimized values of the Hessian update size for larger systems of 50 and 150

hidden nodes (Tables 3.3-3.6). Interestingly, unlike the biomolecular case [30],

we found that the optimal update size for GPU machine learning landscapes can

be large (generally around 100 steps). This relatively high Hessian update size

allows for an accurate computation of the Hessian and thus allows the minimizer

to converge in fewer steps. Since the optimal Hessian update sizes for the GPU

and CPU implementations are within an order of magnitude, we observed only

small di↵erences between the speedup per fixed number of potential calls and the

speedup to convergence (Tables 3.1-3.2 and 3.3-3.6). This result was consistent

with our expectations since the speedup on a fixed call basis should be upper-

bounded by the speedup on a convergence basis.

4.2 Mislabelling

4.2.1 Minima and Transition States in Noisy Datasets

For each error level and all three geometry optimization datasets (D1.2-D3.0),

we catalogued the number of minima and transition states, as well as the loss

corresponding to the training global minimum (Tables 3.7-3.9). We found that,

on average, the number of local minima and transition states increased with

48

the percentage of mislabelled data for all three datasets (Tables 3.7-3.9). This

observation suggests that a large number of local minima reflect many competing

values for the parameters of the model, and thus produce higher uncertainty in the

statistical fit. Based on this reasoning, it is unsurprising that noisier datasets lead

to greater uncertainty in fitting the training data. The loss of the global minimum

also increased as the percentage of mislabelled data increased (Tables 3.7-3.9).

This result suggests that a clean cost function / dataset combination produces

a simpler structure (relative to fitting noise). Furthermore, we also observed

that the larger the molecular configuration space, the greater the number of

minima and transition states (Tables 3.7-3.9). This result is expected as there

should be greater uncertainty in predicting final outcomes from more distant

molecular configurations. In other words, the diversity of the dataset depends on

the size of the configuration space. This interpretation is further supported by

the observation that the loss of the global minimum increases as a function of

configuration space size (Tables 3.7-3.9).

4.2.2 Fitting Accuracies in Noisy Datasets

For the geometry optimization datasets, we also studied how the training global

minimum as well as the average local training minimum performed on an unseen

testing set; we performed these experiments as a function of a fixed percentage

of mislabelling error. First, for the case of 0 % error, we observed a tight band

of low-lying local minima with high AUCs, which agrees closely with previous

work [13,14].

We also observed that, in all three datasets, as the percentage of mislabelled

data increased, the training and testing AUC for both the global and average

training minimum decreased (Tables 3.10-3.12 and 3.13-3.15). This trend is con-

sistent with expectations, as it should be relatively more di�cult to obtain ro-

bust fits in noiser datasets (especially in the underparameterized regime). In-

terestingly, however, we observed that for 10% and 50% error, the testing AUC

outperformed the training AUC for both the global and average local training

minimum (Tables 3.10-3.12 and 3.13-3.15). This result implies that the neural

49

networks learn the structure of the correct data, as suggested in [42].

Thus, since these training AUCs are calculated on the mislabelled dataset, the

networks perform poorly (since they have actually learned the correct structure).

However, since the testing AUCs are calculated on a correctly labelled dataset, the

corresponding networks perform significantly better. Note that when the error

rate is increased to 100%, the training error does not decrease very much. In

this regime, the neural networks exclusively fit noise. However, here, the testing

AUCs decrease precipitously. This result was expected as the neural network

was fitted to noise, and thus cannot possibly generalize to an unseen dataset

(Tables 3.10-3.12 and 3.13-3.15).

Due to the increased speeds observed in Section 4.1 for large neural network

architectures, we used the GPU implementation to perform a similar analysis for

the MNIST dataset and examined the average training and testing AUC values

(for sampled low-lying minima) for various error thresholds. We observed rela-

tively high testing AUC values for all error thresholds between 0 and 75%. Note

that even under 75% uniform random error, we were able to obtain average testing

AUC values in excess of 0.75 (Table 3.19). These results are in line with previ-

ous work on the MNIST dataset [42, 45], which also show that neural networks

can achieve high testing accuracy under uniform random label noise. Unlike the

D1.2-D3.0 datasets, we do not obtain higher testing accuracies relative to training

accuracies as the error percentage is increased. However, after studying average

neural network performance on the correct and incorrect portions of the misla-

belled dataset, it is still true that the networks perform significantly better on

the clean segment, even with large amounts of noise (Table 3.20).

We also examined the variance of the training and testing AUC values for the

D1.2-D3.0 datasets and the MNIST dataset. In both cases, we find a systematic

trend towards increased testing AUC variance with the increase in dataset error,

which indicates a change in the structure of the underlying landscape. Thus,

while we do find good minima, which agree with [42, 45], we also find many bad

minima in agreement with previous attacking type experiments [13,18]. In other

words, based on our empirical results, we find that the relatively tight band of

50

local minima above the global minimum no longer exists for the mislabelled case.

Furthermore, in almost every example, the variance of the average testing AUC is

greater than the variance of the average training AUC. This result indicates that

the uncertainty in the training dataset is directly manifested in the uncertainty of

the landscape. Thus, while [42,45] do show that it is possible to obtain high test-

ing accuracies under uniform random error, the landscapes perspective indicates

that the probability of finding such solutions diminishes as the error percentage

increases. This suggests that for practical neural network applications, if com-

putationally feasible, when training using noisy datasets, it might be beneficial

to optimize a given architecture a greater number of times to determine the best

model. It also indicates that it might be possible to design better optimizers to

preferentially find these good solutions, even with significant training noise.

4.2.3 Disconnectivity Graphs for Noisy Datasets

To study generalization under noise, for each dataset and error threshold, we pro-

duced disconnectivity graphs coloured by both training and testing AUC values

for the D1.2-D3.0 datasets (Figures 2-4). Interestingly, for all error thresholds, we

observed single-funnelled energy landscapes. Since even the graphs at 100% error

had a funnelled appearance, we conclude that this structure arises due to the

single-layered feed-forward architecture, and not the input data. These results

are consistent with previous work on single-layered neural networks [19, 20]. As

expected, for all error thresholds, we observed that low-lying minima have high

training AUCs. Furthermore, the training and testing AUC values are reasonably

correlated for 0% error (Figures 2-4). This result was also unsurprising, as the

hope of neural network training is that low-lying minima generalize well to unseen

testing sets.

Interestingly, as we mislabel the training dataset, the better testing AUC

minima (in the graphs, green-blue) can be found at higher loss values, and the

low-lying minima can have relatively low testing AUCs. This result highlights

that for a fixed irreducible error (training set error), each minima has its own bias-

variance type trade-o↵ (Eqn. 1.3). Some lower minima tend to overfit to noise,

51

leading to high training AUCs and low testing AUCs. However, some higher

loss training minima, pay a training AUC/loss cost, but are able to filter noise

more e↵ectively and thus generalize well. These results are consistent with the

hypothesis that it can sometimes be better to converge to local minima, rather

than the global minimum, to prevent overfitting [14]. Together, these results

help explain why the testing variance of AUC values increases as the percentage

of mislabelled training data increases.

4.3 Neural Network Nearest-Neighbours

We investigated the e↵ects of reduced-connectivity on single-layered networks us-

ing a nearest-neighbour formulation described in Section 2.5.1. For the [2,10,4,1000,0.0001]

architecture, we observed that the potential correctly reproduced the fully-connected

landscape (Figure 6) in the limit of full-connections (100 nearest-neighbours) and

via relaxation with the original potential (three nearest-neighbours). These con-

trol experiments validate the nearest-neighbour potential and allow for systematic

comparison. The small visual di↵erences between these landscapes are likely due

to incomplete sampling. Furthermore, the presence of some large barriers away

from the global minimum is likely due to artificial frustration (Figure 6).

For two and three nearest-neighbours, the number of stationary points in-

creased significantly. This situation is consistent with previous results for in-

teratomic potentials with short-range forces in molecular systems [78–81]. The

present analysis also suggests that strong locality can induce a more complex

machine learning landscapes. This conjecture is supported by recent results for

two- and three-layered neural networks, which can have more locality than single-

layered neural networks, and exhibit more local minima for a similar number of

edge weight variables [41].

Local minima for the two and three nearest-neighbour networks performed

well on an unseen testing set, with the two nearest-neighbour model even outper-

forming the fully-connected model (Figure 6). Here it is worth highlighting that

this result did not occur in the overparametrized limit, as the number of training

data outnumbered the number of optimizable parameters by more than a factor

52

of 10. One possible reason for this phenomenon is the DropOut argument; i.e. the

reduced neural network minimizes the problem of local regions of network coad-

aption, and instead produces a small number of connections which are indepen-

dently good at predicting the correct class [46,51]. Another possible reason could

be that the new network no longer has highly degenerate solutions arising from

parameter permutation, and thus may instead be able to express more complex

fitting functions [52]. This perspective is at least partially substantiated by the

observation of much more complicated landscapes for reduced-connectivity (Fig-

ure 6). Interestingly, however, only two poorly performing minima were found

for the one nearest-neighbour model. This observation likely reflects the fact

that the architecture has significantly reduced capacity, since more than half the

trainable weights are zero. Taken together, our results suggest that in terms of

the landscape, optimal architectures may balance sparsity and expressiveness to

perform well on unseen testing sets.

Although the reduced-connectivity landscapes obtained for the [2,10,4,1000,0.0001]

architecture were significantly more frustrated than the fully-connected model,

they were still relatively single-funnelled (Figure 6). To determine whether we

could obtain multi-funnelled or glassy landscapes, we used the [2,5,4,1000,0.00001]

architecture, which had a much smaller regularization constant (factor of 10).

Since the regularization term is a convex L2 penalty, it is possible that part of the

single-funnelled appearance of the reduced-connectivity networks is due purely to

regularization; i.e higher L2 regularization convexifies the landscape [22]. Again,

for the fully-connected case, we observed a single-funnelled appearance, substan-

tiating our previous claim that this landscape is architecture dependent (Sec-

tion 3.2). However, for the two and three nearest-neighbour models, we observe

somewhat multi-funnelled landscapes (Figure 7). This result further reinforces

the strong e↵ect locality has on single-layered architectures.

5

Conclusions and Future Work

In this dissertation we studied the e↵ect of perturbations on the behaviour of

relatively small neural networks, where the underlying solution landscape could

be properly characterised, using optimization techniques developed for energy

landscapes research.

First, in order to study larger systems, we implemented and interfaced a

CUDA machine learning potential with GMIN, allowing us to systematically ex-

plore much larger machine learning landscapes. We found that for large system

sizes, the GPU implementation significantly outperformed the CPU implementa-

tion (approximately an order of magnitude increase in speed), on both a potential

call basis and a convergence basis. This new potential will make it possible, in

future work, to produce disconnectivity graphs for very wide systems and enable

a detailed study of neural network capacity as a function of the number of hidden

nodes. Exploration in this manner might be helpful in understanding how to

systematically choose better architectures.

Using custom generated high-quality geometry optimization training data, in

the limit of full landscape sampling, we showed that increasing training diversity

(in this case, configuration space volume for an atomic cluster) leads to land-

scapes with many more stationary points and higher loss values. These results

suggest a correspondence between the number of local minima and the statistical

uncertainty of the landscape. In future work we would like to explore the e↵ects

of other systematic additions to training set diversity. One possible experiment

53

54

may include using some D3.0 data within the D1.2 or D2.0 datasets.

In our mislabelling analysis, we found that neural networks are able to cor-

rectly filter uniform noise for very high levels of dataset poisioning and that these

findings remain (empirically) true for averages over the database local minima.

We also find that for mislabelling, a tight band of minima around the global

minimum does not occur. Instead, the variance of the testing AUC increases sig-

nificantly with the training error. Furthermore, we observe that many high loss

training minima perform well on unseen testing input, as they do not overfit to

noise, highlighting a bias-variance type trade-o↵. The results presented here may,

therefore, help guide the creation of specific optimizers to preferentially search for

these better solutions. Pertinent future work involves studying the properties of

minima that perform well under training set mislabelling; in particular, we plan

to examine the Hessian curvature of these solutions. In addition, we would also

like to consider other types of noise. Much of the realistic (and di�cult) noise in

machine learning datasets is not uniform, but instead highly feature dependent

or adversarial [44]. As a first step, we plan to see whether a landscape analysis

might illustrate why it is more di�cult to train under stochastic permutation

noise than uniform random noise [45]. We would also like to extend our noise

analysis to neural networks with more than one hidden layer, which may be more

resilient to labelling noise [42].

Finally, we explored the landscapes of neural networks with reduced-connectivity.

We found that for two and three nearest-neighbour models, the corresponding net-

works retained su�cient expressive capacity. In particular, the network for two

nearest-neighbours systematically outperformed the fully-connected case on un-

seen testing data. Furthermore, the landscapes corresponding to these networks

were complex and highly-frustrated due to the e↵ects of stronger locality. For

very limited connectivity (one nearest-neighbour), we found only a few minima

with poor predictive capability, reflecting the reduced capacity of the network.

These results indicate that, for the networks studied in this work, good solutions

are able to e↵ectively balance sparsity and capacity. Future work in this area will

likely include a generalized scheme for reduced-connectivity of deep neural net-

55

works. In addition, it may be interesting to visualize energy landscapes generated

using a saliency-based reduced-connectivity scheme [51].

The hope from this work is that the insights gleaned from the study of small

networks will carry over to very large networks, where there may be too many pa-

rameters to locate a single local minimum. By exploring the relationship between

the loss landscape and generalizability, we hope that some of this work will be

helpful in guiding the development of better neural network training procedures,

loss functions and optimizers.

References

[1] Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature 521, 436 (2015).

[2] J. Schmidhuber, Deep learning in neural networks: An overview, Neural

Netw. 61, 85 (2015).

[3] A. Krizhevsky, Learning multiple layers of features from tiny images, Tech.

rep. (2009).

[4] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-

scale image recognition, arXiv preprint arXiv:1409.1556 (2014).

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville and Y. Bengio, in Advances in Neural Information

Processing Systems 27, edited by Z. Ghahramani, M. Welling, C. Cortes,

N. D. Lawrence and K. Q. Weinberger, pp. 2672–2680, Curran Associates,

Inc. (2014).

[6] R. Collobert and J. Weston, in Proceedings of the 25th International Con-

ference on Machine Learning, ICML ’08, pp. 160–167, New York, NY, USA

(2008), ACM.

[7] R. R. Trippi and E. Turban, Neural networks in finance and investing: Using

artificial intelligence to improve real world performance, McGraw-Hill, Inc.

(1992).

[8] W. T. Miller, P. J. Werbos and R. S. Sutton, Neural networks for control,

MIT press (1995).

56

57

[9] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learn-

ing, Springer, New York (2009).

[10] Y. Dauphin, R. Pascanu, Ç. Gülçehre, K. Cho, S. Ganguli and Y. Bengio,

Identifying and attacking the saddle point problem in high-dimensional non-

convex optimization, CoRR abs/1406.2572 (2014).

[11] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv

preprint arXiv:1412.6980 (2014).

[12] C. Zhang, S. Bengio, M. Hardt, B. Recht and O. Vinyals, Understanding deep

learning requires rethinking generalization, arXiv preprint arXiv:1611.03530

(2016).

[13] L. Wu, Z. Zhu and W. E, Towards understanding generalization of deep

learning: Perspective of loss landscapes (2017).

[14] A. Choromanska, M. Hena↵, M. Mathieu, G. Arous and Y. LeCun, in Arti-

ficial Intelligence and Statistics, pp. 192–204 (2015).

[15] A. Anandkumar and R. Ge, in Conference on learning theory, pp. 81–102

(2016).

[16] H. Li, Z. Xu, G. Taylor, C. Studer and T. Goldstein, in Adv. Neural Inf.

Process. Syst., pp. 6389–6399 (2018).

[17] Q. Nguyen and M. Hein, in Proceedings of the 34th International Conference

on Machine Learning-Volume 70, pp. 2603–2612. JMLR. org (2017).

[18] G. Swirszcz, W. Czarnecki and R. Pascanu, Local minima in training of deep

networks (2016).

[19] A. J. Ballard, R. Das, S. Martiniani, D. Mehta, L. Sagun, J. D. Stevenson and

D. J. Wales, Energy landscapes for machine learning, Phys. Chem. Chem.

Phys. 19, 12585 (2017).

58

[20] A. J. Ballard, J. D. Stevenson, R. Das and D. J. Wales, Energy landscapes for

a machine learning application to series data, J. Chem. Phys. 144, 124119

(2016).

[21] R. Das and D. J. Wales, Machine learning prediction for classification of

outcomes in local minimisation, Chem. Phys. Lett. 667, 158 (2017).

[22] D. Mehta, X. Zhao, E. A. Bernal and D. J. Wales, Loss surface of xor arti-

ficial neural networks, Physical Review E 97, 052307 (2018).

[23] J. Nocedal, Updating quasi-newton matrices with limited storage, Mathemat-

ics of Computation 35, 773 (1980).

[24] D. C. Liu and J. Nocedal, On limited memory bfgs method for large scale

optimization, Math. Prog. 45, 503 (1989).

[25] C. G. Broyden, The convergence of a class of double-rank minimization al-

gorithms 1. general considerations, IMA J. Appl. Math. 6, 76 (1970).

[26] R. Fletcher, A new approach to variable metric algorithms, Comput. J. 13,

317 (1970).

[27] D. Goldfarb, A family of variable-metric methods derived by variational

means, Math. Comp. 24, 23 (1970).

[28] D. F. Shanno, Conditioning of quasi-newton methods for function minimiza-

tion, Math. Comp. 24, 647 (1970).

[29] D. Wales, Energy Landscapes: Applications to Clusters, Biomolecules and

Glasses, Cambridge Molecular Science, Cambridge University Press (2004).

[30] R. G. Mantell, C. E. Pitt and D. J. Wales, Gpu-accelerated exploration of

biomolecular energy landscapes, Journal of Chemical Theory and Computa-

tion 12, 6182 (2016).

[31] S. A. Trygubenko and D. J. Wales, A doubly nudged elastic band method for

finding transition states, J. Chem. Phys. 120, 2082 (2004).

59

[32] S. A. Trygubenko and D. J. Wales, Analysis of cooperativity and localization

for atomic rearrangements, J. Chem. Phys. 121, 6689 (2004).

[33] G. Henkelman, B. P. Uberuaga and H. Jónsson, A climbing image nudged

elastic band method for finding saddle points and minimum energy paths, J.

Chem. Phys. 113, 9901 (2000).

[34] G. Henkelman and H. Jónsson, Improved tangent estimate in the nudged

elastic band method for finding minimum energy paths and saddle points, J.

Chem. Phys. 113, 9978 (2000).

[35] L. J. Munro and D. J. Wales, Defect migration in crystalline silicon, Phys.

Rev. B 59, 3969 (1999).

[36] Y. Zeng, P. Xiao and G. Henkelman, Unification of algorithms for minimum

mode optimization, J. Chem. Phys. 140, 044115 (2014).

[37] A. Banerjee, N. Adams, J. Simons and R. Shepard, Search for stationary

points on surfaces, J. Phys. Chem. 89, 52 (1985).

[38] O. M. Becker and M. Karplus, The topology of multidimensional potential

energy surfaces: Theory and application to peptide structure and kinetics, J.

Chem. Phys. 106, 1495 (1997).

[39] D. J. Wales, M. A. Miller and T. R. Walsh, Archetypal energy landscapes,

Nature 394, 758 (1998).

[40] F. Despa, D. J. Wales and R. S. Berry, Archetypal energy landscapes: Dy-

namical diagnosis, J. Chem. Phys. 122, 024103 (2005).

[41] P. C. Verpoort, A. A. Lee and D. J. Wales, Machine learning landscapes for

artificial neural networks (in preparation) (2019).

[42] D. Rolnick, A. Veit, S. Belongie and N. Shavit, Deep learning is robust to

massive label noise, arXiv preprint arXiv:1705.10694 (2017).

[43] G. Patrini, A. Rozza, A. K. Menon, R. Nock and L. Qu, in Proc. IEEE.

Comput. Soc. Conf. Comput. Vis. Pattern. Recognit., pp. 1944 – 1952 (2017).

60

[44] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-

low and R. Fergus, Intriguing properties of neural networks, arXiv preprint

arXiv:1312.6199 (2013).

[45] A. J. Bekker and J. Goldberger, in 2016 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 2682 – 2686. IEEE

(2016).

[46] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdi-

nov, Dropout: A simple way to prevent neural networks from overfitting, J.

Machine Learning Res. 15, 1929 (2014).

[47] A. Krizhevsky, I. Sutskever and G. E. Hinton, in Adv. Neural Inf. Process.

Syst., pp. 1097–1105 (2012).

[48] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun and R. Fergus, in International

conference on machine learning, pp. 1058–1066 (2013).

[49] A. Labach, H. Salehinejad and S. Valaee, Survey of dropout methods for deep

neural networks, arXiv preprint arXiv:1904.13310 (2019).

[50] M. Denil, B. Shakibi, L. Dinh and N. D. Freitas, in Advances in neural

information processing systems, pp. 2148–2156 (2013).

[51] Y. LeCun, J. S. Denker and S. A. Solla, in Advances in neural information

processing systems, pp. 598–605 (1990).

[52] S. Changpinyo, M. Sandler and A. Zhmoginov, The power of sparsity in

convolutional neural networks, arXiv preprint arXiv:1702.06257 (2017).

[53] D. B. Kirk and H. W. Wen-Mei, Programming massively parallel processors:

a hands-on approach, Morgan kaufmann (2016).

[54] S. Shi, Q. Wang, P. Xu and X. Chu, in 2016 7th International Conference

on Cloud Computing and Big Data (CCBD), pp. 99–104. IEEE (2016).

[55] K. Oh and K. Jung, Gpu implementation of neural networks, Pattern Recog-

nition 37, 1311 (2004).

61

[56] X. Sierra-Canto, F. Madera-Ramirez and V. Uc-Cetina, in 2010 Ninth In-

ternational Conference on Machine Learning and Applications, pp. 307–312.

IEEE (2010).

[57] nVidia, CUBLAS Library User Guide, nVidia, v5.0 edn. (Oct. 2012).

[58] Y. Fei, G. Rong, B. Wang and W. Wang, Parallel l-bfgs-b algorithm on gpu,

Computers & Graphics 40, 1 (2014).

[59] S. Yatawatta, S. Kazemi and S. Zaroubi, in 2012 Innovative Parallel Com-

puting (InPar), pp. 1–6. IEEE (2012).

[60] G. Rong, Y. Liu, W. Wang, X. Yin, D. Gu and X. Guo, Gpu-assisted compu-

tation of centroidal voronoi tessellation, IEEE transactions on visualization

and computer graphics 17, 345 (2011).

[61] J. E. Jones and A. E. Ingham, On the calculation of certain crystal potential

constants, and on the cubic crystal of least potential energy, Proc. R. Soc. A

107, 636 (1925).

[62] B. M. Axilrod and E. Teller, Interaction of the van der waals type between

three atoms, J. Chem. Phys. 11, 299 (1943).

[63] D. J. Wales, Exploring energy landscapes, Ann. Rev. Phys. Chem. 69, 401

(2018).

[64] L. Deng, The MNIST database of handwritten digit images for machine

learning research, Signal Process. Mag. 29, 141 (2012).

[65] B. Irie and S. Miyake, in IEEE International Conference on Neural Networks.

IEEE (1988).

[66] D. J. Wales and J. P. K. Doye, Global optimization by basin-hopping and

the lowest energy structures of lennard-jones clusters containing up to 110

atoms, J. Phys. Chem. A 101, 5111 (1997).

62

[67] Z. Li and H. A. Scheraga,Monte carlo-minimization approach to the multiple-

minima problem in protein folding, Proc. Natl. Acad. Sci. USA 84, 6611

(1987).

[68] Z. Li and H. A. Scheraga, Structure and free energy of complex thermody-

namic systems, J. Mol. Struct. 179, 333 (1988).

[69] D. Liu and J. Nocedal, On the limited memory bfgs method for large scale

optimization, Math. Prog. 45, 503 (1989).

[70] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and

E. Teller, Equation of state calculations by fast computing machines, J.

Chem. Phys. 21, 1087 (1953).

[71] J. N. Murrell and K. J. Laidler, Symmetries of activated complexes, Trans.

Faraday. Soc. 64, 371 (1968).

[72] J. Baker, An algorithm for the location of transition states, J. Comp. Chem.

7, 385 (1986).

[73] J. P. K. Doye and D. J. Wales, Surveying a potential energy surface by

eigenvector- following - applications to global optimisation and the structural

transformations of clusters, Z. Phys. D 40, 194 (1997).

[74] F. Rao and A. Caflisch, The protein folding network, J. Mol. Biol. 342, 299

(2004).

[75] F. Noé and S. Fischer, Transition networks for modeling the kinetics of con-

formational change in macromolecules, Curr. Opin. Struct. Biol. 18, 154

(2008).

[76] D. Prada-Gracia, J. Gómez-Gardenes, P. Echenique and F. Fernando, Ex-

ploring the free energy landscape: From dynamics to networks and back,

PLoS Comput. Biol. 5, e1000415 (2009).

[77] M. D. Hill and M. R. Marty, Amdahl’s law in the multicore era, Computer

41, 33 (2008).

63

[78] P. A. Braier, R. S. Berry and D. J. Wales, How the range of pair interactions

governs features of multidimensional potentials, J. Chem. Phys. 93, 8745

(1990).

[79] J. P. K. Doye and D. J. Wales, The structure and stability of atomic liquids

- from clusters to bulk, Science 271, 484 (1996).

[80] D. J. Wales, A microscopic basis for the global appearance of energy land-

scapes, Science 293, 2067 (2001).

[81] D. J. Wales, Highlights: Energy landscapes of clusters bound by short-ranged

potentials, ChemPhysChem 11, 2491 (2010).

[82] P. T. Inc., Collaborative data science (2015).

Appendices

64

65

A Molecular Configuration Space Distribution

This section contains the molecular configuration space distributions for the D1.2,

D2.0 and D3.0 datasets (Table 1). Here, class 0 corresponds to the equilateral

triangle structure, and classes 1-3 correspond to linear permutations of the three

atoms. Note that for D1.2, the majority of the bond-length data correspond to

the equilateral triangle class.

Dataset Class 0 Class 1 Class 2 Class 3
D1.2 759 79 71 91
D2.0 360 204 213 223
D3.0 197 252 274 277

Table 1: Number of entries in each class (0-3) for 1000 training points on the D1.2, D2.0 and
D3.0 datasets.

66

B Training and Testing AUC Distribution

This section contains violin plots for training and testing AUCs for the D1.2-D3.0

datasets as a function of the mislabelling error (Figures 8-10).

(a) Training AUC for various percentages of mislabelled data.

(b) Testing AUC for various percentages of mislabelled data.

Figure 8: Violin plots for the training and testing AUC values for various error percentages
on the D1.2 dataset. This plot was created using Plotly [82].

67

(a) Training AUC for various percentages of mislabelled data.

(b) Testing AUC for various percentages of mislabelled data.

Figure 9: Violin plots for the training and testing AUC values for various error percentages
on the D2.0 dataset. This plot was created using Plotly [82].

68

(a) Training AUC for various percentages of mislabelled data.

(b) Testing AUC for various percentages of mislabelled data.

Figure 10: Violin plots for the training and testing AUC values for various error percentages
on the D3.0 dataset. This plot was created using Plotly [82].

